The visualization of collision process of diatomic molecules

نویسندگان

  • Takashi TOKUMASU
  • Yoichiro MATSUMOTO
چکیده

The collison of N2 molecules in which only rotation of molecules is regarded as internal degree of freedom is simulated and the energy transfer between translational and rotational energy is investigated numerically at low temperature. The results are visualized and it is shown that energy transfer changes by the direction and orientation of rotational vector and the impact parameter and it is also distributed in some form according to the initial translational and rotational energy. Using these results, the collision model of diatomic molecule is constructed and is applied to the Direct Simulation Monte Carlo Method and some properties of fluids , for instance, the energy distribution at equiliblium condition and so on, are calculated for making sure of its validity. It is shown that the collision process of diatomic molecules can be calculated well by use of this model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of e ω , e e x ω , e B , and e α using potential energy functions for heteronuclear diatomic molecules via spreadsheet program

In order to represent the potential energy function over the whole range of R, many potentialenergy functions have been proposed. In the present paper, we employ many potential energyfunctions, to use Numerov method for solving the nuclear Schrödinger equation for the IFmolecule, as an example of a heteronuclear diatomic molecules. Then we determine thespectroscopic constants eω , e e x ω , e B...

متن کامل

Physical adsorption between mono and diatomic gases inside of Carbon nanotube with respect to potential energy

In this paper we have down three theoretical study by using Monte Carlo simulation and Mm+,AMBER and OPLS force field. The calculations were carried out using Hyper Chem professional,release 7.01 package of program. first we have studied the interaction of H2 molecule and He atomwith single-walled carbon nanotube at different temperature. For doing this study we placed H2 andHe in the center an...

متن کامل

Calculation of Franck-Condon Factors for a Number of Band Systems of Diatomic Molecules Using Hua Potential

This work deals with the calculation of Franck-Condon factors using Hua potential function for the first time. The advantages of this function have been mentioned, and the numerical methods are used to obtain Franck-Condon factors for the following band systems: Agreement between the values of this work and those obtained from other works is quite good that verifies the reliability...

متن کامل

Rotational branching ratios and photoelectron angular distributions in resonance enhanced multiphoton ionization of diatomic molecules

Articles you may be interested in Molecular‐orbital decomposition of the ionization continuum for a diatomic molecule by angle‐ and energy‐ resolved photoelectron spectroscopy. I. Formalism Complex angular momentum theory of molecular collisions: New phase rules for rotationally inelastic diffraction scattering in atom–homonuclear diatomic molecule collisions

متن کامل

KINETIC STUDIES USING SEMI-EMPIRICAL SELF- CONSISTENT FIELD (SCF) MOLECULAR ORBITAL (MO) METHOD: PARTI. A MODIFIED NEGLECT OF DIATOMIC OVERLAP (MNDO) STUDY OF THE PYROLYSIS OF ETHYL VINYL ETHER

Using a computer code called MOPAC, an acronym for a general Molecular Orbital Package (Quantum Chemistry Programme Exchange (QCPE) Programme No. 455), the geometries and heats of formation of the reactant, the products and the trdnsition state were computed by the MNDO semi- empiricalself consistent field (SCF) method for the pyrolysis of ethyl vinyl ether. ((Force))calculation on the reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009